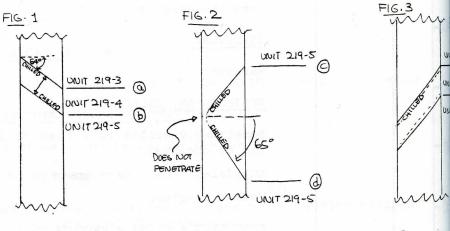


Visual Core Description

Observer . K. Hattori

Depth Interval 1 0 8 0 1 8 cm to 1 2 8 1 6 5 cm


Box 219, Section 4

LITHOLOGY-PETROGRAPHY

Unit 219.3, 219.5, 219.7, 219.9

Grey-green coloured medium-grained aphyritic basalt flow. Flow banding is observed. The banding is parallel to (a), (b) and (d). (65°)

Very homogeneous.

* NOTE* allbild; ellf

UNIT 219 8 = Unit 219 6 = Unit 2

STRUCTURE

Massive

VESICLES/AMYGDALES

Actually lacking vesicles and amygdales.

FRACTURES - VEINS - BRECCIA

Tiny grey clay veinlets and calcite veinlets are observed sometimes.

ROCK ALTERATION

Pyrite is disseminated. It is concentrated inside and just surrounding area of dyke rocks.

Chilled zones of dyke become clayey.

Representation Graphic Sample .70 U.219.7 V CALCITE O PJ (12814) 80 O PZ (1281.83) O GI (158.87) 90. O G2(1281.90) 0 (3(1281.93) FOD -V CALCITE 10. 团. 30. OP= (1282.34) 40 V SMETITE 50 SIMEC SMEC 4 f SMEC. CALCITE 70 SMECTITE OP4 (1282.73) U.219.7 80-U.220.1 OGI (1282.86) 90. 283.00-V CALCITE 10 U.220.1

Visual Core Description

Observer

Depth Interval 1 28 165 cm to 1 28 3 1 7 cm

Box 220, Section 1

LITHOLOGY-PETROGRAPHY

Continues U.219.7

Light gray, medium-grained, holocrystalline, equigranular aphyric basalt. Has a distinct spotted texture with light gray spots 1 mm across/against darker background. A 2 cm-wide fine-grained segregation vein occurs @ 1281.68 m. This contains abundant pyrite as does surrounding rock. This unit is interpreted as a flow.

U.220.1 Dark gray, very fine-grained, holocrystalline, aphyric basalt. Chilled contact at top dips $^{\circ}$ 40°, but dyke margin is nearly parallel to core axis. It is chilled longitudinally against part of the overlying U.219.7.

STRUCTURE

U.219.7 Massive

U.220.1 Massive

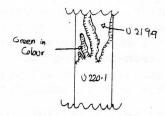
VESICLES/AMYGDALES

U.219.7 <<1%, \sim 1 mm, round, filled with smectite.

U.220.1 None

FRACTURES - VEINS - BRECCIA

Fractures dip \sim 60-70°, coated with smectite, sparse veinlets dip 30° and \sim 60°, filled with smectite and minor calcite. (U.219.7)


U.220.1 One hairline calcite veinlet \sim 90°.

Depth Interval 1 2 8 3 1 7 cm to 1 2 8 4 6 4 cm

Box 220, Section 2

LITHOLOGY-PETROGRAPHY

Intrusive veins from Unit 220.1 split up unit 219.7. Green alteration rim on chilled contact.

U.220.2 Fine grained aphyric scoracious breccia. Colour: pinkish gray to greenish gray.

1284.10 Red scoracious, breccia on contact with U.220.3.

[RS] U.220.3 This unit is chilled against Unit 220.2. It is fine-grained close to upper contact but becomes porphyritic with plagioclase phenocrysts, 1-3 mm in size. Ground mass is medium grained.

VESICLES/AMYGDALES

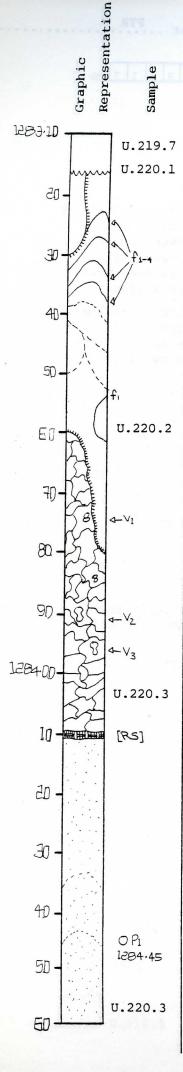
U.220.1. None

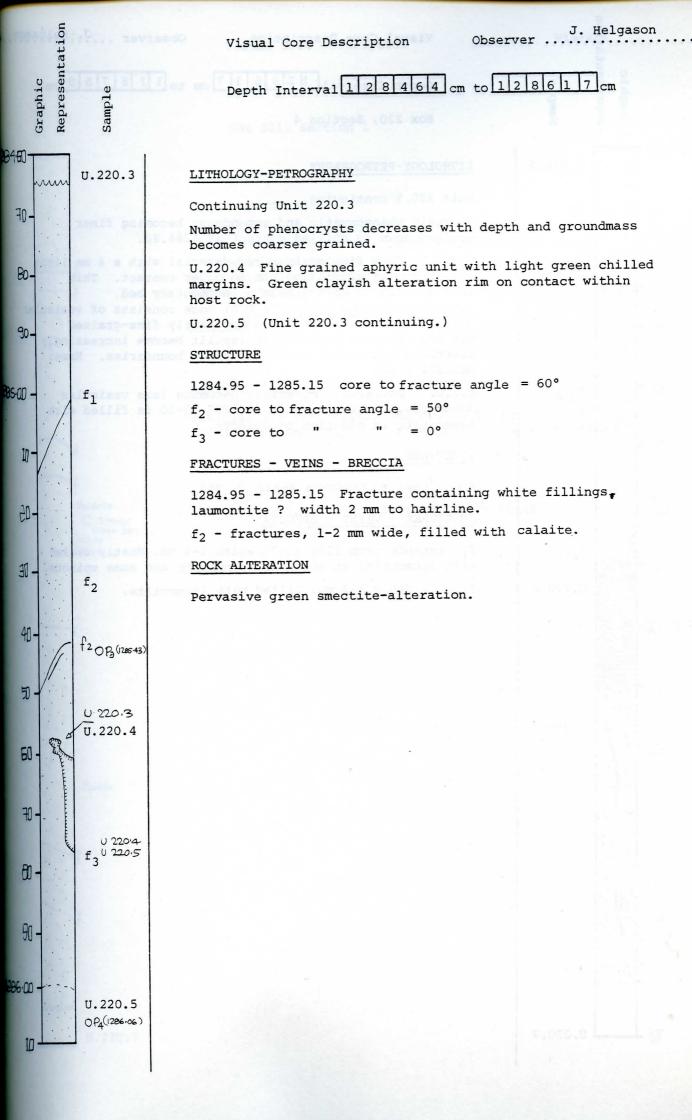
U.220.2 1283.65 f_1 contains radiating laumontite and coating of green and black smectite.

V₁₋₃ contain calcite in addition to green smectite.

U.220.3 Equally distributed vesicles, \leq 1 mm in size filled with dark green smectite.

FRACTURES - VEINS - BRECCIA


1283.30-1283.45 f₁₋₄ Core angle of fractures $^{\circ}$ 80°. Width $^{\circ}$ hairline to 1/2 mm. Filling material: calcite + zeolite.


U.220.2 None

U.220.3 None

ROCK ALTERATION

U.220.3 Pervasive alteration of greenish smectite.

Depth Interval

128617_{cm} to 128760_{cm}

Box 220, Section 4

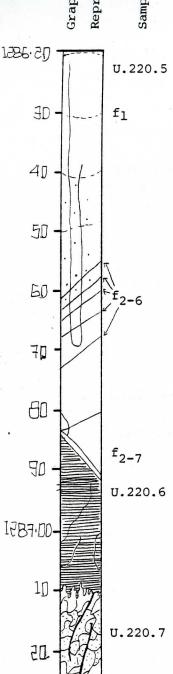
LITHOLOGY-PETROGRAPHY

Unit 220.5 continuing.

Sparsely phenocrystic and groundmass becoming finer grained down to chilled contact at 1286.80.

U.220.6 Very fine grained red material with a 4 mm light greenish gray alteration rim on upper contact. reddish unit is most likely a sedimentary bed. Description changed: 8/5/78 HUS: Rock consists of vesicular lapilli (→ 5 cm Φ) set in an apparently fine-grained matrix. Towards top of unit lapilli become increasingly flattened and whispy with indistinct boundaries. Lapilli tuff.

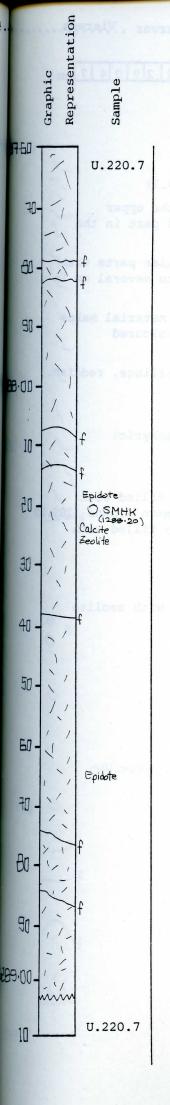
Scoracious material, becoming less vesicular downwards. Vesicular part at 1287.20-30 is filled with laumontite in addition to epidote.


STRUCTURE

f₂₋₆ core to fracture angle ∿ 35°

FRACTURES - VEINS - BRECCIA

extends from 1286.25-70, width 1-4 mm. Mostly filled with laumontite in addition to calcite and some epidote.


 f_{2-7} width = 1-3 mm, filled with laumontite.

Œ

70

U.220.7

Visual Core Description Observer . Viereck .

Depth Interval 1 2 8 7 5 7 cm to 1 2 8 9 0

Box 221, Section 1

LITHOLOGY-PETROGRAPHY

Continues U.220.7

This unit is continuing from Box 220 throughout this whole box into Box 224 In this Box it's the upper scoriacious to massive part of a basaltic flow. Mixture of reddish brown, fine-grained sediment with highly porous, vesicular dark gray (occasionally purplish) basalt.

STRUCTURE

Scoriacious

VESICLES/AMYGDALES

Vesicles are irregularly shaped, up to 8 mm across, average \sim 1 mm. Filling is zeolite, epidote, calcite.

FRACTURES - VEINS - BRECCIA

Fractures are nonplanar, with a dip of $^{\circ}$ 20°, they mostly cut through sedimentary fillings.